Options Pricing Calculator

Black-Scholes model for European options

Parameters

1% 150%
0% 20%
0% 15%
Theoretical Price
$0.00
Intrinsic Value
$0.00
Time Value
$0.00
At The Money
Deep ITM ATM Deep OTM
Delta
0.0000
Price sensitivity
Gamma
0.0000
Delta change rate
Theta
0.0000
Time decay/day
Vega
0.0000
Vol sensitivity
Rho
0.0000
Rate sensitivity
Prob. ITM
50.0%
Prob. OTM
50.0%
d1
0.0000
d2
0.0000
Break-even at Expiry
$100.00
Distance to Break-even
0.00%

Black-Scholes Formula

$$C = Se^{-qT}N(d_1) - Ke^{-rT}N(d_2)$$
$$P = Ke^{-rT}N(-d_2) - Se^{-qT}N(-d_1)$$
$$d_1 = \frac{\ln(S/K) + (r - q + \sigma^2/2)T}{\sigma\sqrt{T}}$$
$$d_2 = d_1 - \sigma\sqrt{T}$$
S=Spot, K=Strike, T=Time, r=Rate, q=Div, σ=Vol, N(·)=CDF